NOTES ON KEISLER MEASURES

ROLAND WALKER

1. PRELIMINARIES AND NOTATION

Throughout these notes, unless otherwise specified, assume we have fixed L an
arbitrary language, T a complete first-order L-theory with infinite models, and
U = T a monster model which is universal and strongly A-homogeneous for some
sufficiently large cardinal # (see [4, Definition 6.15 and Theorem 6.16]). We say a
set is small if its cardinality is strictly less than .

If A C U is a set of parameters, we use L 4 to denote the language LU{c, : a € A}
where each ¢, is a constant symbol, {4 to denote the expansion of U to the L 4-
structure satisfying ¢, = a for each a € A, and T4 to denote Th (U/4) the full theory
of the expansion.

We frequently overload a language symbol L using it to denote the set of all L-
formulae. We may restrict to formulae whose free variables have specific ranges. Let
Xo, ..., Xn—1 be named ranges (i.e., tuples of L-sorts). We use L(Xo,...,Xn_1)
to denote the set of all L-formulae ¢(zg,...,x,—1) with free variables among
Zo,...,Tn_1 where each x; ranges over X;. If we do not wish to specify the range
of a variable, we use * in place of a named range. For example, if X is a tuple of
sorts, we write L(X, %) to indicate the set of all L-formulae ¢(z,y) where x ranges
over X but y may have any range.

Most of the time, we do not name ranges explicitly but simply use a variable’s
name to refer to both the variable and its range depending on the context; for ex-
ample, we write L(z1,...,2,—1) to denote the set of all L-formulae ¢(zo,...,Tn_1)
with free variables among xg,...,z,_1. Any variable may be a tuple, finite
or infinite, unless otherwise specified. If L is one-sorted, then naming a
range is the same as specifying a fixed tuple length. In this case, we may write
L(ko, ..., kn—1) to indicate the set of all L-formulae ¢(x,...,x,_1) where each x;
has length k;. Of course, we may mix any of these conventions; for example, the
expression ¢(z,y, z) € L(X,n,*) means that ¢ is an L-formula, x ranges over X, y
is an n-tuple, and z may have any range.

Given M = T, we use M to denote the domain of M, unless otherwise speci-
fied, and write b € M to indicate that b is a parameter from that domain. Any
parameter may be a tuple, finite or infinite, unless otherwise specified.
If L is multisorted, then we view the domain M as a disjoint union of the domains
for each sort, and if X is a tuple of sorts, we write M~¥ to denote all tuples of
parameters from M which are compatible with the range X.

1.1. Types and Type Spaces. Let X be a tuple of L-sorts, and let b € UX. We
use tp 4(b) to denote the complete type of b over A; i.e.,

tpa(b) ={¢ € La(X) : U = ¢(b)}.

1
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Given by,by € UX, we write by =4 by if by and by have the same complete type
over A. We use S4(X) to denote the set of all X-types over A; i.e.,

Sa(X) = {tpa(b) : beU*}.

Of course, we may use the conventions discussed above and write S4(z) where x is
a variable or S4 (k) where k specifies the tuple length. If we omit the subscript A
in any of the above, we mean to be working in L and T without named parameters.

The standard topology on S4(X) is totally disconnected with a clopen basis
{[¢]a : ¢ € La(X)} where [¢]a denotes the set of all p € S4(X) such that ¢ € p.
If the base under consideration is clear, we often omit it, writing [¢] for [¢]a.

2. PRODUCT SPACES AND PROJECTIONS

Suppose (X, Ta) is a topological space for each a < k.

Definition 2.1. Given A C k, we define the projection
WA:HXQ%HXQ by HaaHHaa.
a<k a€cA a<k acA

In the case where A = {a} is a singleton, we simply write 7, for m4.

Definition 2.2. We call the topology on [] X, generated by the subbasis

a<k
{n;M(Go) :a <k, Gy € To}
the product topology and denote it as ® Ta.
a<k

Notice that ® is associative; in fact, given A C k, we have

<®7;>® R 7| =T

acA Ber\A a<k

Let X =XgxXyand T =Ty ® T;.

Lemma 2.3. The projection mg : X — Xq is surjective, continuous, and open.
Furthermore, if (X1,71) is compact, then g is also closed.

Proof. Surjectivity is obvious, and we can see that 7 is an open continuous map
by observing that

B:{G1XG2:G1‘E7;}

is a basis for (X,7) and that both my and 75" preserve unions.

Suppose X is compact and F' C X is closed. We need to show that mo(F) is
closed. If mo(F) = Xy, we are done. Otherwise, there exists by € X \ mo(F), so
the Tube Lemma [2] 26.8] asserts the existence of an open set G C Xj such that
bQEGgXo\’iTo(F). [l
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3. THE TorPoOLOGY OF TYPE SPACE

Fix a language L and a complete L-theory T" with no finite models. Let U be
a monster model for T'. Given D C U, we can think of Lp(x) as the collection of
subsets of U® which are definable over D. Explicitly, if we let

H={he2kr@ . if T+ ¢ & 4, then h(¢) = h(y)},

and

D={¢(U): ¢ € Lp(x)},

then there is a natural homeomorphism f : H — 2P. See Figure |1l Furthermore, if
D is small, we can think of Sp(x) as the collection of atoms in the complete algebra
on U generated by D. Explicitly, if we let

D" ={p(U) : p € Sp(x)}
then there is a natural bijection
g: f(Sp(z)) = D*.

2LD(’I')
H 2D
Sp(z) f(Sp(x)) D+
i} L}
FIGURE 1.
Let ACBCU.

Proposition 3.1. The projection 7 : Sp(x) — Sa(x), which maps each type p to
its restriction

pla={¢ € La(x): ¢ € p},
is closed, continuous, and surjective.

Proof. Given a set X, let Tx denote the product topology on 2%, or more specifi-
cally, let

Tx = @ P({0,1}).
zeX
Let D C U. By Tychonoff [2, Theorem 37.3], the space

(QLD(w)’ 7—LD(m))

is compact. Furthermore, note that Sp(z) in the usual topology is a closed subspace
and is, therefore, compact. Notice that

ole(z) — 9la(z)  oLlp(x)\La(z)
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QLB(ac) 2LA(x)

Sp(z) Sa(z)
o

FIGURE 2.

and
Tis@) = Toa) @ Tog@\La(x)
so Lemma [2.3] implies that

o - ols(x) _y gla(z)

is closed and continuous. See Figure Since 7 is the restriction of my to Sp(z) and
since both Sp(z) and Sa(z) are closed, it follows that 7 is closed and continuous.
Finally, since every type in S4(x) has an extension in Sg(z), the projection = is
surjective. ([l

For expository purposes, we provide an alternative proof of Proposition [3.I] which
does not appeal to Lemma [2.3]

Proof. As we noted above, the projection map 7 is surjective since every type
in Sa(z) is a partial type in Sp(z) and, therefore, has a completion in Sp(z).
Furthermore, the map is continuous since for all ¢ € L4 (z), we have 7= ([¢]) = [¢/].

It remains to show that 7 is closed. Suppose P C Sp(x) is closed. It follows

that
P=l

oed
for some ® C Lp(x). Let

Q=({[¥]: v € La(x), T+ P+ v}

It is easy to see that w(P) C Q. In order to prove the other inclusion, let ¢ € Q.
Assume that T+ ® + ¢ is inconsistent. By compactness, there is ¢ € ¢ such that
T + ® F —). However, this implies that =) € ¢, a contradiction. O

The projection 7 : Sgp(z) — Sa(z) may not be open. For example, consider the
theory of infinite sets in the empty language. Let b € B\ A, and let p(x) = tpz(b).
It follows that the singleton {p} = [z = b] is open in Sp(z). However, its projection
{pla} is not open in S4(x).

Let L* O L be a language. Choose a model M |= T containing B, and let M*
be an expansion of M to an L*-structure. Let T* = Th(M™*), and let S5 (z) denote
the space of z-types over B in T*.
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Corollary 3.2. The reduction map S§(z) — Sa(x) given by
p—{¥ € La(z) : ¥ € p}
is closed, continuous, and surjective.

Proof. Modify the proof of Proposition by replacing Lg(x) and Sp(z) with
L% (x) and SH(x), respectively. O
Proposition 3.3. The restriction map
r:Salx,y) = Sa(z)
given by
p = pla={¢ € La(x): ¢ €p}
is open, closed, continuous, and surjective.

Proof. To show that r is closed, continuous, and surjective, we can modify the
proof of Proposition [3.1] by replacing Lp () and Sp(z) with La(z,y) and Sa(z,y),
respectively.

It remains to show that r is open. Let ¢ € La(z,y), and let ¢ be Jy ¢(z,y).
If p € [¢], then ¥ € p since p is finitely satisfiable. Now suppose that ¢ € [¢]. It
follows that g 4+ ¢ is consistent, so there exists p € Sa(z,y) such that p - ¢ + ¢.
This demonstrates that r([¢]) = [¢]. O

4. KEISLER MEASURES AND REGULAR BOREL MEASURES

We used Chapter 7 of [3] as the primary reference for much of the content of this
section.

Let A C U. Tt will be helpful to think of L4(z) as the collection of all subsets
of U® which are definable over A as discussed in the previous section.

Definition 4.1. A Keisler measure on La(x) is a finitely additive probability
measure on the algebra of A-definable subsets of U*; i.e., it is a map
p: La(x) —[0,1]
such that u(x = x) =1 and for all ¢, ¢ € La(x), the following hold:
(1) If ¢ and 1 are disjoint, then p(p V) = u(p) + u(y).
(2) If ¢ and ¢ define the same subset of U, then u(¢) = u(v).

4.1. Lifting Keisler Measures to Borel Measures. Let u be a Keisler measure
on Ly (x), and let B denote the Borel subsets of S4(x). We wish to lift i to a regular
Borel measure i : B — [0,1]. We start by defining fig on the clopen subsets of S4 ()
so that it agrees with p. Explicitly, for each ¢ € La(x), we let

fio([¢]) = p(o).
Next, we extend to the open sets. Let G denote the open subsets of S4(x), and
define i1 : G — [0,1] by

fn(G) = sup{p(¢) : ¢ € La(x), [¢] € G}.

Notice that fi; extends fig since p is monotonic.
Lemma 4.2. If (G; :i <w) C G is a sequence of open sets, then

i (U Gi> <> (G

<w 1<w
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Proof. Let G = J, ., Gi, and let € > 0. By the definition of fi;, there is ¢ € La(x)
such that [¢] C G and u(¢) > fi1(G) — e. Since [¢] is compact, there is n < w such
that [¢] C J,.,, Gi. Furthermore, since each G; is a union of clopen sets, we can
find 6o, ...,0,_1 € La(x) such that [¢] C (J,_,[0:] and each [0;] C G;. It follows

that
[1(G) < p(d) +e <> pl:) +e <D (G +e< Y (G

<n <n <w

O

Now we extend to the closed sets. Let F denote the collection of closed subsets
of Sx(x), and define fis : FUG — [0, 1] such that it extends fi; and for every F' € F,
we have

fia(F) = inf{ju(6) : & € La(x), F C []}.

Lemma 4.3. Given F € F and G € G, if F C G, then there is 0 € La(x) such
that F C [0] C G.

Proof. The result follows since F' is compact and G is a union of clopen sets. [
Lemma 4.4. Given X,Y € FUG, if X CY, then jia(X) < fi2(Y).

Proof. It X, Y € Gor X, Y € F, then the result follows directly from the definition
of jiy or fig, respectively. If X € F and Y € G, then we can employ Lemma
Finally, if X € G and Y € F, the result follows since p is monotonic. O

Lemma 4.5. Gven F € F and G € G, if F C G, then i2(G\ F) = [i2(G) — iz (F).

Proof. Let € > 0. By Lemma [4.3] there is § € L(z) such that F C [0] C G, so we
can choose ¢, € L4(z) such that

FCgcloclolCa,
(@) = f2(G) — ¢,

and

It follows that
fia(G\ F) 2 p(@\ ) = p(¢) — p(v) 2 f12(G) — fia(F) — 2¢.
Now choose § € L4(x) such that [§] C G\ F and u(d) > fi2(G\ F) — €. Since

p(8) + p(¥) = p(d V) + p(d A ) < fia(G) + ¢,
it follows that

f2(G\ F) < p(0) + ¢ < fie(G) — () + 2¢ < fiz(G) — fiz(F) + 2e.

Corollary 4.6. If X € FUG, then 12(X°) =1 — fio(X).
Lemma 4.7. IfFQ,Fl e F and FomFl @ then /LQ(F()UFl) > (F0)+ILL2(F1)
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Proof. Since F{ € G, Lemma [4.3| gives us § € L4 (x) such that Fy C [f] C Ff. Fix
e > 0. Choose ¢y € La(x) such that Fy C [¢)] C [0] and

n(tho) < fiz(Fo) +
Similarly, choose 11 € La(z) such that Fy C [¢1] C

p(r) < fro(Fr) +

—6] and

IO — N ™

It follows that
(o) + p(br) — u(Fo U Fr)

fiz([tho V ] \ (Fo U F1))
2([Y0] \ Fo) + fiz([Yn] \ F1)

?

IN A
(L -

SO

fia(Fo U F1) > p(tho) + pu(e1) — €
> fi2(Fo) + fiz(F1) — €.
(]
Definition 4.8. We call a subset X C Sy(x) reqular (with respect to fiz) iff: we
have
sup{fiz(F): FeF, FC X} =inf{i2(G): G € G, X CG}.

Lemma 4.9. The regular subsets of Sa(x) form a o-algebra containing G.

Proof. Let A denote the regular subsets of S4(x). It is easy to see that G C A since
12 is monotonic. In order to show that A is closed under taking complements, let
X € A. Tt follows that

sup{fie(F): F € F, FC X} =sup{l — io(F°): F e F, X C F}
=1-inf{@(G):Geg, X CG}
=1-—sup{fi(F): FeF, FCX}
=inf{l — (F): FeF, FCX}
=inf{ax(F°): F € F, X¢ C F°}
=inf{f12(G) : G € G, X° C G}.

Finally, we show that A is closed under taking countable unions. Let (X, : i <
w) C A, and let € > 0. For all i < w, there exists F; € F and G; € G such that
F; C X; C G; and

_ €
fa2(Gi \ Fi) < il

Let [¢] € U, .., Gi such that

(@) > fiz (U Gi) — €.

Since [¢] is compact, there exists n < w such that [¢] C J,_,, G;. It follows that
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(o) (Ur)en(Ue) o (Un)
= fig (U Gi \ UE) + e < fio (U(GAFQ) +e< 2.

i<n <n <n

SO

Let i : B — [0,1] be defined by
@(B) =sup{pe(F): FeF, FCB}=inf{i:(G):Ge g, BCG}.

Proposition 4.10. If (B; : i < w) C B is a pairwise disjoint sequence of Borel
sets, then

fi (U Bz-> = Zﬁc(Bi)-

Proof. Fix € > 0. For each i < w, there are G; € G and F; € F such that
Fi - Bi - Gi and

~ g

Given n < w, we have

Zﬂ(Gi) —e< Zﬁ(Fz) < Zﬂ(Bi) < Zﬂ(Gi)-

<n <n i<w i<w
Furthermore, since

UFiQ UBiQ UGz‘,

<n 1<w 1<w
we have
i(F;) < fi (U Bi> < (U Gi> <> G).
i<w i<w
It follows that

i <U Bi> - 2_iB)

i<w

O

We have successfully lifted p: La(xz) — [0, 1], an arbitrary Keisler measure, to
fi : B — [0,1], a regular Borel measure on S4(z). In light of Lemma[d.3] it is easy to
see that fis is the unique map extending fig to F UG which can further be extended
to a regular measure. It follows that [ is the unique regular measure lifting u to B.
Since any regular Borel measure restricts to a Keisler measure, there is a one-to-one
correspondence between Keisler measures on L4 (z) and regular Borel measures on
Sa(x). Due to this, we often do not distinguish between a Keisler measure and its
corresponding Borel measure.
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4.2. Changing Bases. Let A C B C U, and let p: Lg(z) — [0,1] be a Keisler
measure. It follows that the restriction of u to L4(x) is also a Keisler measure.

Note 4.11. To ease notation, we will usually write p| 4 rather than uly , () to
denote the restriction of p to La(x).

As discussed in the previous subsection, both p and p] 4 lift uniquely to regular
Borel measures on Sp(z) and S4(x), respectively. Let m: Sp(x) — Sa(z) denote
the projection p — p|a. Proposition [3.1]| asserts that 7 is continuous, so the preim-
age of a Borel set is also Borel. Given any Borel subset X of S4(x), we will use X*
denote 7~ 1(X).

Lemma 4.12. If X is a Borel subset of Sa(x), then u(X*) = ula(X).

Proof. Let G4 and F4 denote the open and closed subsets of S4(z), respectively.
Similarly, let Gg and Fp denote the open and closed subsets of Sg(x).
We start by proving the result for open subsets. Given G € G4, let

bg={¢ € La(z):[¢]a C G}
It follows that

&= s
pedg
If F € Fg and F C G*, then since F is compact, there is ¢ € ® such that F C [¢]p.
Since p is regular, it follows that

w(G*) =sup{u(F): FeFp, FCG'}
sup{u(¢) : ¢ € B}
= pla(G).

The result immediately extends to closed sets since for F' € Fpg, we have u(F) =
1 — p(F€). Finally, we employ regularity to handle arbitrary Borel sets. Let X C
Sa(z) be Borel. It follows that

pla(X) =sup{pla(F): F € Fa, FF C X}
<sup{u(F): FeFp, FCX"}
— u(X7)
=inf{u(GQ): G € Gg, X* C G}
inf{pula(G) : G € G, X CG}
pla(X).

IA

O

4.3. The Support of a Keisler Measure. Let A C U, and let pu be a Keisler
measure on L4 (x). Recall that p lifts uniquely to a regular Borel measure on Sa(z).

Definition 4.13. The support of u is given by
supp(p) = {p € Sa(z) : if ¢ € p, then u(¢) > 0}.
Lemma 4.14. The support of p is a closed subset of Sa(x).

Proof. Suppose p € Sa(z)\supp(p). It follows that u(¢) = 0 for some ¢ € p, so
p € [¢] € Sa()\supp(p). O
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Lemma 4.15. The support of pu has full measure; i.e., pu(supp(p)) = 1.
Proof. Let ® = {¢ € La(x) : u(¢) = 0}, and notice that

Saz)\supp(p) = | J[4]-

PP

If F C Sa(x)\supp(u) is closed, then it can be covered by finitely many null
sets of the form [¢] for some ¢ € ®. Therefore, by regularity, it follows that

1(Sa\supp(p)) = 0. O

4.4. Incorporating Keisler Measures into Models. Given M a small model
of T and X a tuple of L-sorts, let u be Keisler measure on Ly (X). It is important
to notice that u exists only in the metatheory and not in M (or any other model of
T). We can, however, expand M to a model which is aware of p using the following
construction:

First, we expand L by adding a new sort R which we intend to be the domain
for a model of the real numbers. Next, we add new symbols 4+, <, and 1 which
we intend to interpret as usual on R. Finally, for every tuple of L-sorts Y and
every ¢ € L(X,Y), we add a new function symbol p4 : ¥ — R which we intend to
interpret as the function b — u(¢(x,b)). Call the new expanded language L*, and
let

M =M+ R, +,<,1,up : ¢ € L(X, %))
where each new symbol is interpreted as described above. Let T* = Th(M*),

and let A* = M* be a monster model for T*. It follows that the function p* :
Ly« (X) — [0,1] given by
p(d(x,0)) = st(pe(D))

is a Keisler measure extending u. Since the L-reduct of U* is a monster model for
T, this shows that any Keisler measure over a model can be extended to a global
Keisler measure. We will have more to say about extending Keisler measures in
Subsection 5.4l

It is important to note that since U* cannot discern the standard part of a non-
standard real number, the ¢-fibers of p* are not actually definable in U/*. The
calculation of the standard part takes place in the metatheory. Nevertheless, in-
corporating a nonstandard extension of u into U* turns out to be a very useful
construction.

Lemma 4.16. Given ¢ € L(X,Y) ande >0, if T = (b; : i < w) C U* is an
indiscernible sequence and p*(¢(x,b;)) > € for each i < w, then {P(x,b;) : i < w}
is satisfiable.

Proof. Assume not. By the Standard Lemma, we may assume that Z is L*-
indiscernible. Let m < w be minimal such that

uw /\ o(x,b;) | =0.

i<m
For each j < w, let ¢; be

/\ ¢i(x7bi)-

mj <i<m(j+1)
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Now for some standard real number 6 > 0, we have p*(¢;) = ¢ for each j < w.
Given n < w, it follows that

pl \/ W] =ns
j<n
since p*(¢; A1) = 0 for j # j'. This, however, leads to a contradiction since
pw(x=2)=1.
O

4.5. Applications for NIP Theories. Let i be a global Keisler measure on
LU(LL')

Lemma 4.17. Suppose T is NIP. Given ¢ € L(x,y) and € > 0, there exists n < w
such that there is no finite indiscernible sequence (bo, . ..,ban—1) C UY such that

(P, b2i) A ¢, baig1)) > € (%)

for alli <n.
Proof. Assume the lemma does not hold. For each n < w, choose a finite indis-
cernible sequence (by,...,b5,_;) such that (x) holds for ¢ < n. Choose M a small
model of T containing b}' for n < w and ¢ < 2n. Construct M*, U*, and p* as in
Subsection .4

By compactness, there is an L-indiscernible sequence J = (d; : j < w) C U*
such that

1 (o(z, daj) & ¢z, d2j41)) = €
for each j < w, so by Lemma [£.16] there exists a € U* such that
a = ¢(x,doj) A Pz, dajin)
for each j < w. This, however, leads to a contradiction since the L-reduct of U* is

NIP. ]

Proposition 4.18. Suppose T is NIP. Given ¢ € L(x,y) and € > 0, there is
no sequence T = (b; : i < w) C UY such that p(P(x,b;) A ¢(x,bj)) > € for all
1<j<w.

Proof. Assume not. Let M be a small model of T' containing Z, and let M*, U*,
and p* be as discussed in Subsection [£:4 By the Standard Lemma, there is an
L*-indiscernible sequence J = (b} : i < w) C U* with the same L*-EM-type as Z.
This, however, contradicts Lemma [£.17] O

Corollary 4.19. Suppose T is NIP. Given ¢ € L(x,y) and € > 0, there is a finite
B C UY such that for all d € UY, we have u(¢(x,b) A ¢(x,d)) < € for some b € B.

Proof. Let B C UY be maximal such that for all distinct b,b’ € B, we have
w(o(x,b) A ¢(, b/)) > €.
Note that Proposition [I.1§] ensures that B is finite. O
5. PROPERTIES OF KEISLER MEASURES

We used Chapter 7 of [3] as the primary reference for much of the content of this
section.
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5.1. Invariant and Finitely Satisfiable Measures. Let p: Ly (x) — [0,1] be a
global Keisler measure, and let A C U be small.

Definition 5.1. We say p is invariant over A iff: for all ¢ € L(x,x), if b =4 ¥/,
then u(6(z,b)) = p(6(z.b)).

Remark 5.2. When it is not important to specify a particular base, we may simply
say p is invariant to indicate that it is invariant over some small unnamed set.
Furthermore, if v is a Keisler measure on Lp(x) where A C B C U, we say that v
is invariant over A iff: it has a global extension which is invariant over A. Although
we do not restate this remark for each new property introduced in the sequel, we
will follow these same conventions for other properties of Keisler measures such as
finitely satisfiable, definable, generically stable, and smooth.

Lemma 5.3. Given I' C Sy(x), if for alln < w and all vo, ..., -1 € T', we have
W (/\Kn 'yi) > 0, then T' extends to a complete global type in supp(p).

Proof. Let I C Ly(xz) be maximal such that T' C [ and for all n < w and all
Y0,---s¥m-1 € I', we have p(A;.,,7) > 0. Assume there exists ¢ € Ly(z)

such that neither ¢ nor —¢ is in [. It follows that there are Qg ..., p,—1 and
Bo, -y Bm—1 in I' such that p (qﬁ A /\i<m ai) =0and p (ﬂ(b A Nicm BZ-) = 0. How-
ever, this implies that p (/\Km ai AN N\icom ﬁl) = 0, a contradiction. O

Proposition 5.4. Suppose T is NIP and M = T. The measure p is invariant
over M if and only if every type in supp(u) s invariant over M.

Proof. Let ¢ € Ly(x,y), and let b, b’ € UY such that b=y, .

(<) Suppose p(d(z,b) A ¢(x,b')) > 0. By Lemma there is a type in supp(u)
containing the formula ¢(x,b) A ¢(x,b’).

(=) Since b =p; V', by [3, Lemma 5.3], there are by, ...,b, € U for some n > 1
such that by = b, b, = b’ and for each k < n, there is a sequence T, = (d¥ : i < w)
which is indiscernible over M with d’g = b, and d]f = brt1.

Suppose (4 is invariant over M, and assume ¢(z,b) A ¢(z,b') € p for some p €
supp(p). It follows that u(p(z,b) A ¢(z, b)) > 0, so u(p(x,ds) A ¢(z,d¥)) > 0 for
some k < n. However, since y is invariant over M, this contradicts Lemma [4.17]

O

Definition 5.5. We say u is finitely satisfiable in A iff: for all ¢ € Ly(z), if
() > 0, then there is an a € A realizing ¢.

Lemma 5.6. If i is finitely satisfiable in A, then it is invariant over A.

Proof. Suppose p is finitely satisfiable in A. Let ¢ € L(z,y), and let b =4 V.
Assume pu(¢(z,0)) > p(e(z,b')). It follows that

p(o(x, )\ d(2,b)) = p(d(x, b)) — p(p(x,0) Az, b))
> p(@(x, b)) — p(e(x, b)) > 0,
so there is a € A such that a = ¢(z,b) A =¢(z, V'), a contradiction. O

Proposition 5.7. The measure u is finitely satisfiable in A if and only if all types
in supp(u) are finitely satisfiable in A.
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Proof. (=) Suppose p is finitely satisfiable in A. Let p € supp(u), and let ¢q, ..., Ppp_1 €
p. It follows that A,_, ¢ € p, so u(/A\,., @) > 0. Thus, the conjunction is satisfi-
able in A.

(<) Suppose pu is not finitely satisfiable in A. By definition, there exists ¢ €
Ly (z) such that u(¢) > 0 and ¢(A) = &, so Lemma [5.3] asserts that some type in
supp(u) contains ¢. O

5.2. Definable Measures. Let u : Ly(z) — [0,1] be a global Keisler measure,
and let A C U be small.

Definition 5.8. For all ¢(z,y) € L(x, %), let
pe 1 UY —[0,1]
be defined by
1o (b) = p((,b)).

Definition 5.9. We say u is definable over A iff: for all ¢(x,y) € L(x,*) and for
all closed sets F' C [0, 1], the preimage ,u(;l(F) is type-definable over A, i.e., there
exists I' C L4 (y) such that for all b € UY, we have b =T < u(¢(z,b)) € F.

Lemma 5.10. If u is definable over A, then it is invariant over A.

Proof. Let ¢ € L(xz,y) and b € UY. If u is definable over A, then there exists
I’ C tp4(b) such that for all ¥’ € UY, we have

VET <= w(é(x,b)) = pu(o(z,b)).
0

Definition 5.11. If y is invariant over A, then for all ¢(x,y) € L(x, ), we define

[gla s Saly) — [0,1]
such that
(o] a(tp (b)) = p(o(x,b))
for all b € UY.

Lemma 5.12. If u is invariant over A, then the following are equivalent:
(1) The measure p is definable over A.
(2) For all ¢ € L(x,*), the map [uyla is continuous.
(8) For all ¢ € L(x,*), if D is of the form [0,7), then [uy) ;" (D) is open.
(4) For all ¢ € L(z,*) N
(5) For all ¢ € L(z, ) 2H(D) is closed.
(6) For all ¢ € L(x,*) 11 (D) is closed.

Proof. Let ¢(x,y) € L(z,*), and let D C [0, 1] be closed. In S4(y), all closed sets
are of the form [, cp[7] for some I' € Sa(y), so (1) < (2).
Notice that (3) < (4) since

we(x, b)) <r <= p(=p(x,b)) >1-r.

We can now see that (2) through (4) are equivalent since the open rays form a
subbasis for [0, 1]. The rest of the needed implications follow from the fact that in
any topological space, a subset is open if and only if its complement is closed. [

, if D is of the form [0,r], then [pe]
: ]
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Corollary 5.13. Suppose p is definable. If u is invariant over A, then u is definable
over A.

Proof. Suppose p is definable over B. The result follows since the projection
Sap(x) — Sp(x) is continuous and the projection Sap(x) — Sa(x) is closed (see

Proposition . O

Definition 5.14. We say that p is Borel-definable over A iff: it is invariant over
A and for all ¢ € L(x,*), the map [ug]a is Borel.

Lemma 5.15. If i is invariant over A, then the following are equivalent:
(1) The measure p is Borel-definable over A.

(2) For all ¢ € L(x, %), if D is of the form [0

(8) For all ¢ € L(x,*), if D is of the form [0 N

(4) For all ¢ € L(x,*), if D is of the form [r, 1], then [ug],

A

Proof. The rays of any one type generate the Borel o-algebra on [0, 1]. g

Lemma 5.16. Suppose T is NIP. If a global type p € Sy(x) is invariant over A,
then it is Borel-definable over A.

Proof. Given ¢(z,y) € L(x,*), we need to show that

Q = {tpa(b) : ¢(x,b) € p} € Sa(y)
is a Borel set. Let m = max{alt(¢(x,b)) : b € U}, and for every n < m, let
F, = ﬂ [w(IOa cee ,l‘n)] N n [¢(x17y) A ¢(xi+17 y)] - SA(‘TOa s ,xn,y).
Y EpP iy i<n

It follows that F,, N [¢(zn,y)] is closed in Su(xo,...,Zn,y), so its restriction to
Sa(y), call it @y, is closed by Corollary Similarly, the restriction of Fj, N
[=¢(2n,y)] to Sa(y), callit Ry, is also closed. It follows that @ = J,,,,,(@n N Ry,),
so (Q is Borel. O

5.3. Generically Stable Measures. Let p : Ly(z) — [0,1] be a global Keisler
measure, and let A C U be small.

Definition 5.17. We say u is generically stable over A iff: it is finitely satisfiable
and definable, both with respect to A.

In order to give some examples of generically stable measures, we define two
notions of average measure.

Definition 5.18. Given a finite sequence a = (ag, ..., a,—1) C U*, the map
Avg : Ly(x) — [0,1]
given by
1
AV&(¢) = E Z 6% (d)(U)))
<n
where J,, denotes the Dirac measure at a;, is a Keisler measure which we call the
average measure determined by a.
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It is easy to see that Avg is generically stable over {im(a;) : ¢ < n}. For our
second notion of average measure, we require T to be NIP.
Definition 5.19. If T'is NIP and Z = (b; : 7 € [0,1]) C U” is indiscernible, then
the map Avz : Ly(x) — [0, 1] given by
Avz(¢) =m({i € [0,1] : U |= ¢(bi)}),
where m denotes the Lebesgue measure, is a Keisler measure which we call the

average measure determined by Z.

Notice that since we require 7' to be NIP and Z to be indiscernible, the set
{i €10,1] : U = ¢(b;)} is Lebesgue measurable for all ¢ € Ly (x). In Lemma
below, we will show that Avz is generically stable over Z.

Lemma 5.20. Suppose T is NIP. Given ¢ € L(x,y) and € > 0, there exists n < w
such that for every indiscernible sequence of x-tuples T = (b; : i € [0,1]), there are
ag,...,an_1 € L such that

| Avz(6(x, d)) — Ava(@(e, )| < &
for alld € U.

Proof. Let m = max{alt(¢(z,d)) : d € U}, and let n > m/e. Given an indiscernible
sequence Z = (b; : i € [0,1]) C U?, let ay = by, for each k < n. Fix d € U. Since
the set

K= {k<n U E ¢lag, d) A ¢(b;,d) for some i € (k,k+1>}

n n

contains at most m elements, it follows that

| Ave(6(e, ) ~ Ava(o(e,d))| < o) <.

(]

Lemma 5.21. Suppose T is NIP. If T C U is an indiscernible sequence of tuples
indezed by [0,1], then Avz is generically stable over T.

Proof. It is easy to see that Avy is finitely satisfiable in Z. Fix ¢ € L(z,y) and
r > 0. Let

Q=1{qe Sz(y) : Avz(é(x,b)) < r for some b |= q}
Suppose ¢ € Q. Let b = ¢, and let

LT sz2(¢>(x, b)) .

By Lemma there are aq,...,a,_1 € Z such that for all d € U, we have
| Avz(¢(z,d)) — Ava(d(z,d))| <e.
Let 1 denote the conjunction
/\ _‘(rzs(a% y)
UE—¢(ai,b)

Notice that g € [¢)] C @, so @ is open in Sz(y). Thus, Lemma [5.12|(3) asserts that
Av7 is definable over 7. O
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5.4. Extending Measures. Let D C Ly(x) be an algebra (see [I, p. 21]) of
definable sets, and let v : D — [0, 1] be a finitely additive probability measure. Fix
¢ € Ly(z) and r € [0,1].

Lemma 5.22. If for all finite F C Ly(z), there is a map pur : F — [0,1] such
that

(1) for all D € DN F, we have pr(D) = v(D),
(2) for all disjoint Fy, Fy € F, if FoUFy € F, then
pr(Fo U F1) = pr(Fo) + pr(F1), and

(3) if 6 € F, then pr(6) =1,
then there is a global Keisler measure p : Ly(x) — [0,1] extending v such that

(o) =r.

Proof. Let X = [0,1]%v(®) By Tychonoff’s Theorem, X is compact. For all finite
F C Ly(x), let

K(F)={p € X : ulr satisfies (1), (2), and (3)}.
Notice that each K (F) is closed and, therefore, compact. Let
K={K(F):F C Ly(x) is finite}

Suppose that for all finite F C Ly (x), there is a map pur : F — [0, 1] such that (1),
(2), and (3) hold. It follows that X has the finite intersection property, since

(N K(F) 2K <U }'i> .
i<n i<n
Furthermore, since X is compact, there exists p € ()i K. (]
Proposition 5.23. If

sup{v(D): D €D, DC ¢} <r<inf{v(D):DeD, ¢ C D},
then there is a global Keisler measure p : Ly(x) — [0,1] extending v such that
n(g) =r.

Proof. Let F C Ly (x) be a finite algebra of definable sets, and let B = (By, ..., Bp-1)
be an enumeration of the atoms in D N F. Notice that n > 1 since all algebras on
X contain X. We can enumerate the atoms of F as

Az{Ag:i<n, jgmi}
where each Ag C B;.
Case 1: If ¢ ¢ F, then for each i < n and j < m;, let

0 otherwise.

nr(A]) = {

Case 2: If ¢ € F, we may assume we have enumerated B so that there exists
k <l < n such that

B, C¢p << i<k and BiNg+#0 < i<l
Furthermore, we may assume we have enumerated A so that

i<l = AC¢ and i>k = A"N¢=0.
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Ifi <k, let

(A7) = {”(B” S

0 otherwise.
Itk <i<l,let
pr(AY) = max{min{r — v(ByU---UB;_1), v(B;)}, 0}
and
; 0 if0<j<my,
nr(A7) = e
v(B;) — pr(AY) if j =m,.
Iti > 1, let
j v(B;) ifj=m;
Hr (A {O otherwise.
If e F\ A, then let

pr(F)= Y pr(A).

{A€A: ACF}
We may now appeal to Lemma [5.22 O

5.5. Smooth Measures. Let u: Ly(z) — [0,1] be a global Keisler measure, and
let A C U be small.

Definition 5.24. We say p is smooth over A iff: it is the unique global Keisler
measure extending g 4.

Lemma 5.25. The measure p is smooth over A if and only if for all ¢(z,y) €
L(z,*) and all e > 0, there exists n < w, along with formulae

g, n_1 € La(x), Boy--.,Pn-1€La(x), and ~o,...,%m-1 € La(y),
such that
(1) UEYy Vi, vi(y)s
(2) U =Yy Nic, [iy) = Vo [ai(z) = d(2,y) — Bi(z)]], and
(3) w(Bi) — uley) < e foralli < n.

Proof. Fix ¢(x,y) € L(x, *).
(=) Suppose p is smooth over A, and let € > 0. Proposition implies that
for every b € UY there exists ay, Oy € La(x) such that

U E vz [ap(x) = ¢(z,0) — By(a)]
and p(Bp) — u(aw) < €. For every b € U, let 1, be the L4(y) formula
Va [ay(2) = d(,y) = Bu(z)]-

Since U = ¥y (b) for all b € U, we conclude that {—, : b € U} is inconsistent with
Ta. Therefore, there exist bo,...,b,—1 € U such that U = Yy \/,_, ¥s,(y). For
each i < n, let ; be the L4(y) formula

Ve [ap, (x) = oz, y) = By, (2)].
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(<) Given b € UY, construct sequences (o )k<w and (Bg)r<w in La(x) such that
for each k < w, we have
UV [ag(z) = ¢(z,b) — Bi(z)]
and

1(Br) — plax) < 1/k.
O

Proposition 5.26. Suppose T is NIP. There is a global Keisler measure v on
Ly (x) extending pla which is smooth over some small B C U.

Proof. Let k = |T|*. If the proposition does not hold, we can construct a chain of
Keisler measures (v, : a < k) extending u| 4 as follows:

a=0: Letyy=pla.
o limit:  Let v, = Uﬁ<a va.

a+1:  Given v, a Keisler measure on L 45_, (), choose

¢o¢(xa y) € L(CE7 *)7

b € UY,

ne € N, and

Keisler measures pp and p; on Lap__ (x) extending v,

such that (p1 — po)(Pa (2, ba)) > 1/nq, and let vo41 = 5(po + p1). Notice
that for every 6 € La,_, (), if we let ¢ denote ¢ (z,bq), we have

pi(0 & 0) = pi(9) + pi(0) — 2pi(¢ N O) = |pi(d) — pi(0)],
and since
po(0) = p1(0),
it follows that

1 1
Vat1(¢ A 0) > §|Pl(¢) —po(9)| > e

For each ¢(z,y) € L(z,%), let Ay = {a < K : ¢pq is ¢}. Since k = |T|*, there
is a formula ¢ such that |As| = k. For each n > 0, let B, = {a € Ay : no = n}.
Again, there is a positive integer n such that |B,| = . This, however, contradicts

Proposition a

Lemma 5.27. Given M =T, if p is smooth over M, then it is generically stable
over M.

Proof. Given ¢ € Ly(x) with u(¢) > 0, by Lemma there is a € Lys(z) such
that U = a — ¢ and p(a) > 0. Tt follows that a(M) # &, so u is finitely satisfiable
in M.

It remains to show that p is definable over M. Let ¢(z,y) € L(z,*) and b € UY.
Suppose p(p(x,b)) < r for some r € [0,1]. By Lemma there is v € tpy,(b)
such that [7] C [ug]y/ ([0,7)). Now we may appeal to Lemma 3). O

Lemma 5.28. Given M |= T, if y is invariant over M and smooth (over some
small set), then it is smooth over M.



NOTES ON KEISLER MEASURES 19

Proof. Suppose p is invariant over M and smooth. Lemma [5.27] asserts that p is
definable, so by Corollary [5.13 it is definable over M.

Fix ¢ € L(z,y) and € > 0. Applying Lemma to ¢ and € gives us a finite
sequence of formulae

(Oéi(ﬂ?, b)7 61'(3;’ b): ’Vi(yv b))z<n
where o;(z, 2), Bi(x, 2),vi(y, ) € L and b € U? such that
U\ 7,0 A N\ iy, b) = (@, b) = (@, y) = Bi(w,b)]
i<n <n
and for each i < n, we have pu(83;(x,b) \ a;(z,0)) < e. Since u is definable over M,

Lemma 3) ensures the existence of 1;(2) € tp,;(b) for each ¢ < n such that for
all b/ € ¢, (U), we have u (5;(x,0') \ au(z,b')) < e. It follows that

M3z | A i) A\ 3l 2) & A i 2) = o, 2) = 6e,y) = Bl )|

so Lemma [5.25] asserts that p is smooth over M. O

5.6. Approximating Smooth Measures. Let p : Ly(z) — [0,1] be a global
Keisler measure, and let D C U be a small set of parameters.

Proposition 5.29. Suppose p is smooth over D. Given ¢(x,y) € L(x,*) and
e > 0, there is a finite sequence a = (ag, . ..,an—1) € U* such that for all b € UY,
we have

u(@(x,0)) — Ava(¢(z,b))| <e.
Furthermore, if D C M =T, then we may choose a to be a sequence in M.

Proof. Lemma [5.25] gives us a finite sequence of Lp formulae

(ai(z), Bi(z), 7i(y))i<n

such that
U=\ 7w A N\l = lai@) = oz, y) — Bi(@)]]
i<n i<n

and pu(8;\a;) < €/2 for each i < n. Let B C P(U) be the boolean algebra generated
by

{al(U)aﬂl(U) 11 < 77,},
and let A denote the set of atoms in B. Fix K > 2|A|/e. For each A € A, choose
aq € A and

ka € {LK - pw(A)], [K - u(A)]}

K:ZkA.

in such a way that

AeA
Let )
A== kada,.
K AeA
It follows that A is a Keisler measure on Ly (). Notice that for all A € A, we have

1

1 (A) = A ()] < 2.
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so for all B € B, we have
€
n(B) - \B)| < 5.
Given b € U, fix i < n such that U = 7;(b). Let By = a;(U), By = 5;(U), and
® = ¢(U,b). Recall that By C ® C By and

p(B1) = p(Bo) <

| ™

It follows that
A(B1) — u(Bg) < e
and
1(B1) — A(Bo) <e,
so we conclude that
(@) — A(®)] <e.
a

Let m : Sy(z) — Sp(x) be the projection p — p|p. Given any Borel subset
X of Sp(x), we will use X* to denote 7~1(X). Recall Lemma asserts that

w(X*) = plp(X).
Proposition 5.30. Suppose u is smooth over D. Given

* ¢(z,y) € L(z,*),
e >0, and
e Xo,...,X;n_1 Borel subsets of Sp(x),

there is a finite sequence p = (po, ..., Pn—1) C supp(u) such that for allb € UY and
all £ < m, we have

[z, b)lu N X7) — Avp([¢(z,0)]u N X[)| <e
Proof. Lemma [5.25| gives us a finite sequence of Lp formulae

(ai(), Bi(z), 7i(y))i<n
such that
Ut ) A A\bity) = loi(@) = olw,y) = Bia))]

and p(8; \ o) < e/2 for each i < n. Let B C P(Sp(x)) be the boolean algebra
generated by

{Xe: L <m}U{[e(z)]p, [Bi(z)]p : i < n},
and let A denote the set of atoms in B. Fix K > 2|A|/e. For each A € A, choose
pa € A* and

ka € {LK - pw(A)], [K - u(A)]}

K=Y ka

AcA

in such a way that

and if k4 > 0, then ps € supp(u). Let

1
A= — Z kApA-
KAE.A
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It follows that ) is a Keisler measure on Ly (x) which extends uniquely to a regular
Borel measure on Sy (), namely

1
= Y kaby,
K AcA
Notice that for all A € A, we have
1
A*) — A (A" —
1 (A7) = A (A7) <
so for all B € B, we have
* * €
u(B*) = A(B")| < 5.

Given b € U and £ < m, fix 4 < n such that U = v;(b). Let By = [a(z)]p N Xy
and By = [Bi(x)]p N X;. Let @ = [¢(x,b)]y N X[ . Recall that B C & C Bf and
u(BY) = u(B3) < 5.
It follows that
A(By) —u(Bg) < e
and
u(B1) — A(Bp) <,
so we conclude that
(@) — ()| < 2.
([

Corollary 5.31. Suppose T is NIP. Given ¢(x,y) € L(z,*) and € > 0, there is a
finite sequence a = (ag, . ..,an—1) C U? such that for all d € DY, we have

lu(d(z,d)) — Ava(o(z,d))| <e.
Furthermore, if Xo, ..., Xm—1 are Borel subsets of Sp(x), there is a finite sequence
D= (po,---,Pn-1) C Su(x) such that for all d € DY and all £ < m, we have

u([o(x; d)]o N X7) — Avp([¢(z, d)]o N X[)| <e.

Proof. By Proposition[5.26] the restriction p|p extends to a global Keisler measure
v which is smooth over some small D’ D D. O
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