
NOTES ON KEISLER MEASURES

ROLAND WALKER

1. Preliminaries and notation

Throughout these notes, unless otherwise specified, assume we have fixed L an
arbitrary language, T a complete first-order L-theory with infinite models, and
U |= T a monster model which is universal and strongly κ̂-homogeneous for some
sufficiently large cardinal κ̂ (see [4, Definition 6.15 and Theorem 6.16]). We say a
set is small if its cardinality is strictly less than κ̂.

If A ⊆ U is a set of parameters, we use LA to denote the language L∪{ca : a ∈ A}
where each ca is a constant symbol, UA to denote the expansion of U to the LA-
structure satisfying ca = a for each a ∈ A, and TA to denote Th (UA) the full theory
of the expansion.

We frequently overload a language symbol L using it to denote the set of all L-
formulae. We may restrict to formulae whose free variables have specific ranges. Let
X0, . . . , Xn−1 be named ranges (i.e., tuples of L-sorts). We use L(X0, . . . , Xn−1)
to denote the set of all L-formulae φ(x0, . . . , xn−1) with free variables among
x0, . . . , xn−1 where each xi ranges over Xi. If we do not wish to specify the range
of a variable, we use ∗ in place of a named range. For example, if X is a tuple of
sorts, we write L(X, ∗) to indicate the set of all L-formulae φ(x, y) where x ranges
over X but y may have any range.

Most of the time, we do not name ranges explicitly but simply use a variable’s
name to refer to both the variable and its range depending on the context; for ex-
ample, we write L(x1, . . . , xn−1) to denote the set of all L-formulae φ(x0, . . . , xn−1)
with free variables among x0, . . . , xn−1. Any variable may be a tuple, finite
or infinite, unless otherwise specified. If L is one-sorted, then naming a
range is the same as specifying a fixed tuple length. In this case, we may write
L(κ0, . . . , κn−1) to indicate the set of all L-formulae φ(x0, . . . , xn−1) where each xi
has length κi. Of course, we may mix any of these conventions; for example, the
expression φ(x, y, z) ∈ L(X,n, ∗) means that φ is an L-formula, x ranges over X, y
is an n-tuple, and z may have any range.

Given M |= T , we use M to denote the domain of M, unless otherwise speci-
fied, and write b ∈ M to indicate that b is a parameter from that domain. Any
parameter may be a tuple, finite or infinite, unless otherwise specified.
If L is multisorted, then we view the domain M as a disjoint union of the domains
for each sort, and if X is a tuple of sorts, we write MX to denote all tuples of
parameters from M which are compatible with the range X.

1.1. Types and Type Spaces. Let X be a tuple of L-sorts, and let b ∈ UX . We
use tpA(b) to denote the complete type of b over A; i.e.,

tpA(b) = {φ ∈ LA(X) : U |= φ(b)}.
1
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Given b1, b2 ∈ UX , we write b1 ≡A b2 if b1 and b2 have the same complete type
over A. We use SA(X) to denote the set of all X-types over A; i.e.,

SA(X) =
{

tpA(b) : b ∈ UX
}
.

Of course, we may use the conventions discussed above and write SA(x) where x is
a variable or SA(κ) where κ specifies the tuple length. If we omit the subscript A
in any of the above, we mean to be working in L and T without named parameters.

The standard topology on SA(X) is totally disconnected with a clopen basis
{[φ]A : φ ∈ LA(X)} where [φ]A denotes the set of all p ∈ SA(X) such that φ ∈ p.
If the base under consideration is clear, we often omit it, writing [φ] for [φ]A.

2. Product Spaces and Projections

Suppose (Xα, Tα) is a topological space for each α < κ.

Definition 2.1. Given A ⊆ κ, we define the projection

πA :
∏
α<κ

Xα →
∏
α∈A

Xα by
∏
α<κ

aα 7→
∏
α∈A

aα.

In the case where A = {α} is a singleton, we simply write πα for πA.

Definition 2.2. We call the topology on
∏
α<κ

Xα generated by the subbasis

{π−1
α (Gα) : α < κ, Gα ∈ Tα}

the product topology and denote it as
⊗
α<κ

Tα.

Notice that ⊗ is associative; in fact, given A ⊆ κ, we have(⊗
α∈A
Tα

)
⊗

 ⊗
β∈κ\A

Tβ

 =
⊗
α<κ

Tα.

Let X = X0 ×X1 and T = T0 ⊗ T1.

Lemma 2.3. The projection π0 : X → X0 is surjective, continuous, and open.
Furthermore, if (X1, T1) is compact, then π0 is also closed.

Proof. Surjectivity is obvious, and we can see that π0 is an open continuous map
by observing that

B = {G1 ×G2 : Gi ∈ Ti}

is a basis for (X, T ) and that both π0 and π−1
0 preserve unions.

Suppose X1 is compact and F ⊆ X is closed. We need to show that π0(F ) is
closed. If π0(F ) = X0, we are done. Otherwise, there exists b0 ∈ X0 \ π0(F ), so
the Tube Lemma [2, 26.8] asserts the existence of an open set G ⊆ X0 such that
b0 ∈ G ⊆ X0 \ π0(F ). �
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3. The Topology of Type Space

Fix a language L and a complete L-theory T with no finite models. Let U be
a monster model for T . Given D ⊂ U , we can think of LD(x) as the collection of
subsets of Ux which are definable over D. Explicitly, if we let

H = {h ∈ 2LD(x) : if T ` φ↔ ψ, then h(φ) = h(ψ)},

and

D = {φ(U) : φ ∈ LD(x)},

then there is a natural homeomorphism f : H → 2D. See Figure 1. Furthermore, if
D is small, we can think of SD(x) as the collection of atoms in the complete algebra
on U generated by D. Explicitly, if we let

D∗ = {p(U) : p ∈ SD(x)}
then there is a natural bijection

g : f(SD(x))→ D∗.

2LD(x)

H

SD(x)
f

2D

f(SD(x))
g

D∗

Figure 1.

Let A ⊆ B ⊆ U .
Proposition 3.1. The projection π : SB(x) → SA(x), which maps each type p to
its restriction

p�A = {φ ∈ LA(x) : φ ∈ p},
is closed, continuous, and surjective.
Proof. Given a set X, let TX denote the product topology on 2X , or more specifi-
cally, let

TX =
⊗
x∈X
P({0, 1}).

Let D ⊆ U . By Tychonoff [2, Theorem 37.3], the space(
2LD(x), TLD(x)

)
is compact. Furthermore, note that SD(x) in the usual topology is a closed subspace
and is, therefore, compact. Notice that

2LB(x) = 2LA(x) × 2LB(x)\LA(x)
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2LB(x)

SB(x)
π0

2LA(x)

SA(x)

Figure 2.

and
TLB(x) = TLA(x) ⊗ TLB(x)\LA(x),

so Lemma 2.3 implies that
π0 : 2LB(x) → 2LA(x)

is closed and continuous. See Figure 2. Since π is the restriction of π0 to SB(x) and
since both SB(x) and SA(x) are closed, it follows that π is closed and continuous.
Finally, since every type in SA(x) has an extension in SB(x), the projection π is
surjective. �

For expository purposes, we provide an alternative proof of Proposition 3.1 which
does not appeal to Lemma 2.3.

Proof. As we noted above, the projection map π is surjective since every type
in SA(x) is a partial type in SB(x) and, therefore, has a completion in SB(x).
Furthermore, the map is continuous since for all ψ ∈ LA(x), we have π−1([ψ]) = [ψ].

It remains to show that π is closed. Suppose P ⊆ SB(x) is closed. It follows
that

P =
⋂
φ∈Φ

[φ]

for some Φ ⊆ LB(x). Let

Q =
⋂
{[ψ] : ψ ∈ LA(x), T + Φ ` ψ} .

It is easy to see that π(P ) ⊆ Q. In order to prove the other inclusion, let q ∈ Q.
Assume that T + Φ + q is inconsistent. By compactness, there is ψ ∈ q such that
T + Φ ` ¬ψ. However, this implies that ¬ψ ∈ q, a contradiction. �

The projection π : SB(x)→ SA(x) may not be open. For example, consider the
theory of infinite sets in the empty language. Let b ∈ B \A, and let p(x) = tpB(b).
It follows that the singleton {p} = [x = b] is open in SB(x). However, its projection
{p�A} is not open in SA(x).

Let L∗ ⊇ L be a language. Choose a modelM |= T containing B, and letM∗
be an expansion ofM to an L∗-structure. Let T ∗ = Th(M∗), and let S∗B(x) denote
the space of x-types over B in T ∗.
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Corollary 3.2. The reduction map S∗B(x)→ SA(x) given by
p 7→ {ψ ∈ LA(x) : ψ ∈ p}

is closed, continuous, and surjective.

Proof. Modify the proof of Proposition 3.1 by replacing LB(x) and SB(x) with
L∗B(x) and S∗B(x), respectively. �

Proposition 3.3. The restriction map
r : SA(x, y)→ SA(x)

given by
p 7→ p�x = {φ ∈ LA(x) : φ ∈ p}

is open, closed, continuous, and surjective.

Proof. To show that r is closed, continuous, and surjective, we can modify the
proof of Proposition 3.1 by replacing LB(x) and SB(x) with LA(x, y) and SA(x, y),
respectively.

It remains to show that r is open. Let φ ∈ LA(x, y), and let ψ be ∃y φ(x, y).
If p ∈ [φ], then ψ ∈ p since p is finitely satisfiable. Now suppose that q ∈ [ψ]. It
follows that q + φ is consistent, so there exists p ∈ SA(x, y) such that p ` q + φ.
This demonstrates that r([φ]) = [ψ]. �

4. Keisler Measures and Regular Borel Measures

We used Chapter 7 of [3] as the primary reference for much of the content of this
section.

Let A ⊆ U . It will be helpful to think of LA(x) as the collection of all subsets
of Ux which are definable over A as discussed in the previous section.

Definition 4.1. A Keisler measure on LA(x) is a finitely additive probability
measure on the algebra of A-definable subsets of Ux; i.e., it is a map

µ : LA(x)→ [0, 1]
such that µ(x = x) = 1 and for all φ, ψ ∈ LA(x), the following hold:

(1) If φ and ψ are disjoint, then µ(φ ∨ ψ) = µ(φ) + µ(ψ).
(2) If φ and ψ define the same subset of Ux, then µ(φ) = µ(ψ).

4.1. Lifting Keisler Measures to Borel Measures. Let µ be a Keisler measure
on LA(x), and let B denote the Borel subsets of SA(x). We wish to lift µ to a regular
Borel measure µ̃ : B → [0, 1]. We start by defining µ̃0 on the clopen subsets of SA(x)
so that it agrees with µ. Explicitly, for each φ ∈ LA(x), we let

µ̃0([φ]) = µ(φ).
Next, we extend to the open sets. Let G denote the open subsets of SA(x), and

define µ̃1 : G → [0, 1] by
µ̃1(G) = sup{µ(φ) : φ ∈ LA(x), [φ] ⊆ G}.

Notice that µ̃1 extends µ̃0 since µ is monotonic.

Lemma 4.2. If (Gi : i < ω) ⊆ G is a sequence of open sets, then

µ̃1

(⋃
i<ω

Gi

)
≤
∑
i<ω

µ̃1(Gi).
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Proof. Let G =
⋃
i<ω Gi, and let ε > 0. By the definition of µ̃1, there is φ ∈ LA(x)

such that [φ] ⊆ G and µ(φ) ≥ µ̃1(G)− ε. Since [φ] is compact, there is n < ω such
that [φ] ⊆

⋃
i<nGi. Furthermore, since each Gi is a union of clopen sets, we can

find θ0, . . . , θn−1 ∈ LA(x) such that [φ] ⊆
⋃
i<n[θi] and each [θi] ⊆ Gi. It follows

that

µ̃1(G) ≤ µ(φ) + ε ≤
∑
i<n

µ(θi) + ε ≤
∑
i<n

µ̃1(Gi) + ε ≤
∑
i<ω

µ̃1(Gi) + ε.

�

Now we extend to the closed sets. Let F denote the collection of closed subsets
of SA(x), and define µ̃2 : F∪G → [0, 1] such that it extends µ̃1 and for every F ∈ F ,
we have

µ̃2(F ) = inf{µ(φ) : φ ∈ LA(x), F ⊆ [φ]}.

Lemma 4.3. Given F ∈ F and G ∈ G, if F ⊆ G, then there is θ ∈ LA(x) such
that F ⊆ [θ] ⊆ G.

Proof. The result follows since F is compact and G is a union of clopen sets. �

Lemma 4.4. Given X,Y ∈ F ∪ G, if X ⊆ Y , then µ̃2(X) ≤ µ̃2(Y ).

Proof. If X,Y ∈ G or X,Y ∈ F , then the result follows directly from the definition
of µ̃1 or µ̃2, respectively. If X ∈ F and Y ∈ G, then we can employ Lemma 4.3.
Finally, if X ∈ G and Y ∈ F , the result follows since µ is monotonic. �

Lemma 4.5. Given F ∈ F and G ∈ G, if F ⊆ G, then µ̃2(G\F ) = µ̃2(G)− µ̃2(F ).

Proof. Let ε > 0. By Lemma 4.3, there is θ ∈ LA(x) such that F ⊆ [θ] ⊆ G, so we
can choose φ, ψ ∈ LA(x) such that

F ⊆ [ψ] ⊆ [θ] ⊆ [φ] ⊆ G,
µ(φ) ≥ µ̃2(G)− ε,

and

µ(ψ) ≤ µ̃2(F ) + ε.

It follows that

µ̃2(G \ F ) ≥ µ(φ \ ψ) = µ(φ)− µ(ψ) ≥ µ̃2(G)− µ̃2(F )− 2ε.

Now choose δ ∈ LA(x) such that [δ] ⊆ G \ F and µ(δ) ≥ µ̃2(G \ F )− ε. Since

µ(δ) + µ(ψ) = µ(δ ∨ ψ) + µ(δ ∧ ψ) ≤ µ̃2(G) + ε,

it follows that

µ̃2(G \ F ) ≤ µ(δ) + ε ≤ µ̃2(G)− µ(ψ) + 2ε ≤ µ̃2(G)− µ̃2(F ) + 2ε.

�

Corollary 4.6. If X ∈ F ∪ G, then µ̃2(Xc) = 1− µ̃2(X).

Lemma 4.7. If F0, F1 ∈ F and F0 ∩F1 = ∅, then µ̃2(F0 ∪F1) ≥ µ̃2(F0) + µ̃2(F1).
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Proof. Since F c1 ∈ G, Lemma 4.3 gives us θ ∈ LA(x) such that F0 ⊆ [θ] ⊆ F c1 . Fix
ε > 0. Choose ψ0 ∈ LA(x) such that F0 ⊆ [ψ0] ⊆ [θ] and

µ(ψ0) ≤ µ̃2(F0) + ε

2 .

Similarly, choose ψ1 ∈ LA(x) such that F1 ⊆ [ψ1] ⊆ [¬θ] and

µ(ψ1) ≤ µ̃2(F1) + ε

2 .

It follows that

µ(ψ0) + µ(ψ1)− µ(F0 ∪ F1) = µ̃2([ψ0 ∨ ψ1] \ (F0 ∪ F1))
≤ µ̃2([ψ0] \ F0) + µ̃2([ψ1] \ F1)
≤ ε,

so

µ̃2(F0 ∪ F1) ≥ µ(ψ0) + µ(ψ1)− ε
≥ µ̃2(F0) + µ̃2(F1)− ε.

�

Definition 4.8. We call a subset X ⊆ SA(x) regular (with respect to µ̃2) iff: we
have

sup{µ̃2(F ) : F ∈ F , F ⊆ X} = inf{µ̃2(G) : G ∈ G, X ⊆ G}.

Lemma 4.9. The regular subsets of SA(x) form a σ-algebra containing G.

Proof. Let A denote the regular subsets of SA(x). It is easy to see that G ⊆ A since
µ̃2 is monotonic. In order to show that A is closed under taking complements, let
X ∈ A. It follows that

sup{µ̃2(F ) : F ∈ F , F ⊆ Xc} = sup{1− µ̃2(F c) : F ∈ F , X ⊆ F c}
= 1− inf{µ̃2(G) : G ∈ G, X ⊆ G}
= 1− sup{µ̃2(F ) : F ∈ F , F ⊆ X}
= inf{1− µ̃2(F ) : F ∈ F , F ⊆ X}
= inf{µ̃2(F c) : F ∈ F , Xc ⊆ F c}
= inf{µ̃2(G) : G ∈ G, Xc ⊆ G}.

Finally, we show that A is closed under taking countable unions. Let (Xi : i <
ω) ⊆ A, and let ε > 0. For all i < ω, there exists Fi ∈ F and Gi ∈ G such that
Fi ⊆ Xi ⊆ Gi and

µ̃2(Gi \ Fi) ≤
ε

2i+1 .

Let [φ] ⊆
⋃
i<ω Gi such that

µ(φ) ≥ µ̃2

(⋃
i<ω

Gi

)
− ε.

Since [φ] is compact, there exists n < ω such that [φ] ⊆
⋃
i<nGi. It follows that

µ̃2

(⋃
i<ω

Gi

)
− µ̃2

(⋃
i<n

Gi

)
≤ ε,
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so

µ̃2

(⋃
i<ω

Gi

)
− µ̃2

(⋃
i<n

Fi

)
≤ µ̃2

(⋃
i<n

Gi

)
− µ̃2

(⋃
i<n

Fi

)
+ ε

= µ̃2

(⋃
i<n

Gi \
⋃
i<n

Fi

)
+ ε ≤ µ̃2

(⋃
i<n

(Gi \ Fi)
)

+ ε ≤ 2ε.

�

Let µ̃ : B → [0, 1] be defined by

µ̃(B) = sup {µ̃2(F ) : F ∈ F , F ⊆ B} = inf {µ̃2(G) : G ∈ G, B ⊆ G} .

Proposition 4.10. If (Bi : i < ω) ⊆ B is a pairwise disjoint sequence of Borel
sets, then

µ̃

(⋃
i<ω

Bi

)
=
∑
i<ω

µ̃(Bi).

Proof. Fix ε > 0. For each i < ω, there are Gi ∈ G and Fi ∈ F such that
Fi ⊆ Bi ⊆ Gi and

µ̃(Gi \ Fi) ≤
ε

2i+1 .

Given n < ω, we have∑
i<n

µ̃(Gi)− ε ≤
∑
i<n

µ̃(Fi) ≤
∑
i<ω

µ̃(Bi) ≤
∑
i<ω

µ̃(Gi).

Furthermore, since ⋃
i<n

Fi ⊆
⋃
i<ω

Bi ⊆
⋃
i<ω

Gi,

we have ∑
i<n

µ̃(Fi) ≤ µ̃
(⋃
i<ω

Bi

)
≤ µ̃

(⋃
i<ω

Gi

)
≤
∑
i<ω

µ̃(Gi).

It follows that ∣∣∣∣∣µ̃
(⋃
i<ω

Bi

)
−
∑
i<ω

µ̃(Bi)

∣∣∣∣∣ ≤ ε.
�

We have successfully lifted µ : LA(x) → [0, 1], an arbitrary Keisler measure, to
µ̃ : B → [0, 1], a regular Borel measure on SA(x). In light of Lemma 4.3, it is easy to
see that µ̃2 is the unique map extending µ̃0 to F ∪G which can further be extended
to a regular measure. It follows that µ̃ is the unique regular measure lifting µ to B.
Since any regular Borel measure restricts to a Keisler measure, there is a one-to-one
correspondence between Keisler measures on LA(x) and regular Borel measures on
SA(x). Due to this, we often do not distinguish between a Keisler measure and its
corresponding Borel measure.
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4.2. Changing Bases. Let A ⊆ B ⊆ U , and let µ : LB(x) → [0, 1] be a Keisler
measure. It follows that the restriction of µ to LA(x) is also a Keisler measure.

Note 4.11. To ease notation, we will usually write µ�A rather than µ�LA(x) to
denote the restriction of µ to LA(x).

As discussed in the previous subsection, both µ and µ�A lift uniquely to regular
Borel measures on SB(x) and SA(x), respectively. Let π : SB(x) → SA(x) denote
the projection p 7→ p�A. Proposition 3.1 asserts that π is continuous, so the preim-
age of a Borel set is also Borel. Given any Borel subset X of SA(x), we will use X∗
denote π−1(X).

Lemma 4.12. If X is a Borel subset of SA(x), then µ(X∗) = µ�A(X).

Proof. Let GA and FA denote the open and closed subsets of SA(x), respectively.
Similarly, let GB and FB denote the open and closed subsets of SB(x).

We start by proving the result for open subsets. Given G ∈ GA, let
ΦG = {φ ∈ LA(x) : [φ]A ⊆ G}.

It follows that
G∗ =

⋃
φ∈ΦG

[φ]B .

If F ∈ FB and F ⊆ G∗, then since F is compact, there is φ ∈ Φ such that F ⊆ [φ]B .
Since µ is regular, it follows that

µ(G∗) = sup{µ(F ) : F ∈ FB , F ⊆ G∗}
= sup{µ(φ) : φ ∈ Φ}
= µ�A(G).

The result immediately extends to closed sets since for F ∈ FB , we have µ(F ) =
1 − µ(F c). Finally, we employ regularity to handle arbitrary Borel sets. Let X ⊆
SA(x) be Borel. It follows that

µ�A(X) = sup{µ�A(F ) : F ∈ FA, F ⊆ X}
≤ sup{µ(F ) : F ∈ FB , F ⊆ X∗}
= µ(X∗)
= inf{µ(G) : G ∈ GB , X∗ ⊆ G}
≤ inf{µ�A(G) : G ∈ GA, X ⊆ G}
= µ�A(X).

�

4.3. The Support of a Keisler Measure. Let A ⊆ U , and let µ be a Keisler
measure on LA(x). Recall that µ lifts uniquely to a regular Borel measure on SA(x).

Definition 4.13. The support of µ is given by
supp(µ) = {p ∈ SA(x) : if φ ∈ p, then µ(φ) > 0}.

Lemma 4.14. The support of µ is a closed subset of SA(x).

Proof. Suppose p ∈ SA(x)\ supp(µ). It follows that µ(φ) = 0 for some φ ∈ p, so
p ∈ [φ] ∈ SA(x)\ supp(µ). �
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Lemma 4.15. The support of µ has full measure; i.e., µ(supp(µ)) = 1.

Proof. Let Φ = {φ ∈ LA(x) : µ(φ) = 0}, and notice that

SA(x)\ supp(µ) =
⋃
φ∈Φ

[φ].

If F ⊆ SA(x)\ supp(µ) is closed, then it can be covered by finitely many null
sets of the form [φ] for some φ ∈ Φ. Therefore, by regularity, it follows that
µ(SA\ supp(µ)) = 0. �

4.4. Incorporating Keisler Measures into Models. Given M a small model
of T and X a tuple of L-sorts, let µ be Keisler measure on LM (X). It is important
to notice that µ exists only in the metatheory and not inM (or any other model of
T ). We can, however, expandM to a model which is aware of µ using the following
construction:

First, we expand L by adding a new sort R which we intend to be the domain
for a model of the real numbers. Next, we add new symbols +, <, and 1 which
we intend to interpret as usual on R. Finally, for every tuple of L-sorts Y and
every φ ∈ L(X,Y ), we add a new function symbol µφ : Y → R which we intend to
interpret as the function b 7→ µ(φ(x, b)). Call the new expanded language L∗, and
let

M∗ =M+ (R,+, <, 1, µφ : φ ∈ L(X, ∗))
where each new symbol is interpreted as described above. Let T ∗ = Th(M∗),
and let N ∗ � M∗ be a monster model for T ∗. It follows that the function µ∗ :
LU∗(X)→ [0, 1] given by

µ∗(φ(x, b)) = st(µφ(b))
is a Keisler measure extending µ. Since the L-reduct of U∗ is a monster model for
T , this shows that any Keisler measure over a model can be extended to a global
Keisler measure. We will have more to say about extending Keisler measures in
Subsection 5.4.

It is important to note that since U∗ cannot discern the standard part of a non-
standard real number, the φ-fibers of µ∗ are not actually definable in U∗. The
calculation of the standard part takes place in the metatheory. Nevertheless, in-
corporating a nonstandard extension of µ into U∗ turns out to be a very useful
construction.

Lemma 4.16. Given φ ∈ L(X,Y ) and ε > 0, if I = (bi : i < ω) ⊆ U∗ is an
indiscernible sequence and µ∗(φ(x, bi)) ≥ ε for each i < ω, then {φ(x, bi) : i < ω}
is satisfiable.

Proof. Assume not. By the Standard Lemma, we may assume that I is L∗-
indiscernible. Let m < ω be minimal such that

µ∗

∧
i≤m

φ(x, bi)

 = 0.

For each j < ω, let ψj be ∧
mj≤ i <m(j+1)

φi(x, bi).
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Now for some standard real number δ > 0, we have µ∗(ψj) = δ for each j < ω.
Given n < ω, it follows that

µ∗

∨
j<n

ψj

 = nδ

since µ∗(ψj ∧ ψj′) = 0 for j 6= j′. This, however, leads to a contradiction since
µ∗(x = x) = 1.

�

4.5. Applications for NIP Theories. Let µ be a global Keisler measure on
LU (x).

Lemma 4.17. Suppose T is NIP. Given φ ∈ L(x, y) and ε > 0, there exists n < ω
such that there is no finite indiscernible sequence (b0, . . . , b2n−1) ⊆ Uy such that

µ(φ(x, b2i)4 φ(x, b2i+1)) ≥ ε (∗)
for all i < n.

Proof. Assume the lemma does not hold. For each n < ω, choose a finite indis-
cernible sequence (bn0 , . . . , bn2n−1) such that (∗) holds for i < n. ChooseM a small
model of T containing bni for n < ω and i < 2n. ConstructM∗, U∗, and µ∗ as in
Subsection 4.4.

By compactness, there is an L-indiscernible sequence J = (dj : j < ω) ⊆ U∗

such that
µ∗(φ(x, d2j)4 φ(x, d2j+1)) ≥ ε

for each j < ω, so by Lemma 4.16, there exists a ∈ U∗ such that
a |= φ(x, d2j)4 φ(x, d2j+1)

for each j < ω. This, however, leads to a contradiction since the L-reduct of U∗ is
NIP. �

Proposition 4.18. Suppose T is NIP. Given φ ∈ L(x, y) and ε > 0, there is
no sequence I = (bi : i < ω) ⊆ Uy such that µ(φ(x, bi)4 φ(x, bj)) ≥ ε for all
i < j < ω.

Proof. Assume not. Let M be a small model of T containing I, and letM∗, U∗,
and µ∗ be as discussed in Subsection 4.4. By the Standard Lemma, there is an
L∗-indiscernible sequence J = (b∗i : i < ω) ⊆ U∗ with the same L∗-EM-type as I.
This, however, contradicts Lemma 4.17. �

Corollary 4.19. Suppose T is NIP. Given φ ∈ L(x, y) and ε > 0, there is a finite
B ⊆ Uy such that for all d ∈ Uy, we have µ(φ(x, b)4 φ(x, d)) < ε for some b ∈ B.

Proof. Let B ⊆ Uy be maximal such that for all distinct b, b′ ∈ B, we have
µ(φ(x, b)4 φ(x, b′)) ≥ ε.

Note that Proposition 4.18 ensures that B is finite. �

5. Properties of Keisler Measures

We used Chapter 7 of [3] as the primary reference for much of the content of this
section.
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5.1. Invariant and Finitely Satisfiable Measures. Let µ : LU (x)→ [0, 1] be a
global Keisler measure, and let A ⊆ U be small.

Definition 5.1. We say µ is invariant over A iff: for all φ ∈ L(x, ∗), if b ≡A b′,
then µ(φ(x, b)) = µ(φ(x, b′)).

Remark 5.2. When it is not important to specify a particular base, we may simply
say µ is invariant to indicate that it is invariant over some small unnamed set.
Furthermore, if ν is a Keisler measure on LB(x) where A ⊆ B ⊆ U , we say that ν
is invariant over A iff: it has a global extension which is invariant over A. Although
we do not restate this remark for each new property introduced in the sequel, we
will follow these same conventions for other properties of Keisler measures such as
finitely satisfiable, definable, generically stable, and smooth.

Lemma 5.3. Given Γ ⊆ SU (x), if for all n < ω and all γ0, . . . , γn−1 ∈ Γ, we have
µ
(∧

i<n γi
)
> 0, then Γ extends to a complete global type in supp(µ).

Proof. Let Γ̂ ⊆ LU (x) be maximal such that Γ ⊆ Γ̂ and for all n < ω and all
γ0, . . . , γn−1 ∈ Γ̂, we have µ

(∧
i<n γi

)
> 0. Assume there exists φ ∈ LU (x)

such that neither φ nor ¬φ is in Γ̂. It follows that there are α0, . . . , αm−1 and
β0, . . . , βm−1 in Γ̂ such that µ

(
φ ∧

∧
i<m αi

)
= 0 and µ

(
¬φ ∧

∧
i<m βi

)
= 0. How-

ever, this implies that µ
(∧

i<m αi ∧
∧
i<m βi

)
= 0, a contradiction. �

Proposition 5.4. Suppose T is NIP and M |= T . The measure µ is invariant
over M if and only if every type in supp(µ) is invariant over M .

Proof. Let φ ∈ LM (x, y), and let b, b′ ∈ Uy such that b ≡M b′.
(⇐) Suppose µ(φ(x, b)4 φ(x, b′)) > 0. By Lemma 5.3, there is a type in supp(µ)

containing the formula φ(x, b)4 φ(x, b′).
(⇒) Since b ≡M b′, by [3, Lemma 5.3], there are b0, . . . , bn ∈ U for some n ≥ 1

such that b0 = b, bn = b′ and for each k < n, there is a sequence Ik = (dki : i < ω)
which is indiscernible over M with dk0 = bk and dk1 = bk+1.

Suppose µ is invariant over M , and assume φ(x, b)4 φ(x, b′) ∈ p for some p ∈
supp(µ). It follows that µ(φ(x, b)4 φ(x, b′)) > 0, so µ(φ(x, dk0)4 φ(x, dk1)) > 0 for
some k < n. However, since µ is invariant over M , this contradicts Lemma 4.17.

�

Definition 5.5. We say µ is finitely satisfiable in A iff: for all φ ∈ LU (x), if
µ(φ) > 0, then there is an a ∈ A realizing φ.

Lemma 5.6. If µ is finitely satisfiable in A, then it is invariant over A.

Proof. Suppose µ is finitely satisfiable in A. Let φ ∈ L(x, y), and let b ≡A b′.
Assume µ(φ(x, b)) > µ(φ(x, b′)). It follows that

µ (φ(x, b) \ φ(x, b′)) = µ(φ(x, b))− µ (φ(x, b) ∧ φ(x, b′))
≥ µ(φ(x, b))− µ(φ(x, b′)) > 0,

so there is a ∈ A such that a |= φ(x, b) ∧ ¬φ(x, b′), a contradiction. �

Proposition 5.7. The measure µ is finitely satisfiable in A if and only if all types
in supp(µ) are finitely satisfiable in A.
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Proof. (⇒) Suppose µ is finitely satisfiable inA. Let p ∈ supp(µ), and let φ0, . . . , φn−1 ∈
p. It follows that

∧
i<n φi ∈ p, so µ(

∧
i<n φi) > 0. Thus, the conjunction is satisfi-

able in A.
(⇐) Suppose µ is not finitely satisfiable in A. By definition, there exists φ ∈

LU (x) such that µ(φ) > 0 and φ(A) = ∅, so Lemma 5.3 asserts that some type in
supp(µ) contains φ. �

5.2. Definable Measures. Let µ : LU (x) → [0, 1] be a global Keisler measure,
and let A ⊆ U be small.

Definition 5.8. For all φ(x, y) ∈ L(x, ∗), let
µφ : Uy → [0, 1]

be defined by
µφ(b) = µ(φ(x, b)).

Definition 5.9. We say µ is definable over A iff: for all φ(x, y) ∈ L(x, ∗) and for
all closed sets F ⊆ [0, 1], the preimage µ−1

φ (F ) is type-definable over A, i.e., there
exists Γ ⊆ LA(y) such that for all b ∈ Uy, we have b |= Γ⇔ µ(φ(x, b)) ∈ F .

Lemma 5.10. If µ is definable over A, then it is invariant over A.

Proof. Let φ ∈ L(x, y) and b ∈ Uy. If µ is definable over A, then there exists
Γ ⊆ tpA(b) such that for all b′ ∈ Uy, we have

b′ |= Γ ⇐⇒ µ(φ(x, b′)) = µ(φ(x, b)).
�

Definition 5.11. If µ is invariant over A, then for all φ(x, y) ∈ L(x, ∗), we define
[µφ]A : SA(y)→ [0, 1]

such that
[µφ]A(tpA(b)) = µ(φ(x, b))

for all b ∈ Uy.

Lemma 5.12. If µ is invariant over A, then the following are equivalent:
(1) The measure µ is definable over A.
(2) For all φ ∈ L(x, ∗), the map [µφ]A is continuous.
(3) For all φ ∈ L(x, ∗), if D is of the form [0, r), then [µφ]−1

A (D) is open.
(4) For all φ ∈ L(x, ∗), if D is of the form (r, 1], then [µφ]−1

A (D) is open.
(5) For all φ ∈ L(x, ∗), if D is of the form [0, r], then [µφ]−1

A (D) is closed.
(6) For all φ ∈ L(x, ∗), if D is of the form [r, 1], then [µφ]−1

A (D) is closed.

Proof. Let φ(x, y) ∈ L(x, ∗), and let D ⊆ [0, 1] be closed. In SA(y), all closed sets
are of the form

⋂
γ∈Γ[γ] for some Γ ⊆ SA(y), so (1)⇔ (2).

Notice that (3)⇔ (4) since
µ(φ(x, b)) < r ⇐⇒ µ(¬φ(x, b)) > 1− r.

We can now see that (2) through (4) are equivalent since the open rays form a
subbasis for [0, 1]. The rest of the needed implications follow from the fact that in
any topological space, a subset is open if and only if its complement is closed. �
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Corollary 5.13. Suppose µ is definable. If µ is invariant over A, then µ is definable
over A.

Proof. Suppose µ is definable over B. The result follows since the projection
SAB(x) → SB(x) is continuous and the projection SAB(x) → SA(x) is closed (see
Proposition 3.1). �

Definition 5.14. We say that µ is Borel-definable over A iff: it is invariant over
A and for all φ ∈ L(x, ∗), the map [µφ]A is Borel.

Lemma 5.15. If µ is invariant over A, then the following are equivalent:
(1) The measure µ is Borel-definable over A.

(2) For all φ ∈ L(x, ∗), if D is of the form [0, r), then [µφ]−1
A (D) is Borel.

(3) For all φ ∈ L(x, ∗), if D is of the form [0, r], then [µφ]−1
A (D) is Borel.

(4) For all φ ∈ L(x, ∗), if D is of the form [r, 1], then [µφ]−1
A (D) is Borel.

(5) For all φ ∈ L(x, ∗), if D is of the form (r, 1], then [µφ]−1
A (D) is Borel.

Proof. The rays of any one type generate the Borel σ-algebra on [0, 1]. �

Lemma 5.16. Suppose T is NIP. If a global type p ∈ SU (x) is invariant over A,
then it is Borel-definable over A.

Proof. Given φ(x, y) ∈ L(x, ∗), we need to show that
Q = {tpA(b) : φ(x, b) ∈ p} ⊆ SA(y)

is a Borel set. Let m = max{alt(φ(x, b)) : b ∈ U}, and for every n ≤ m, let

Fn =
⋂

ψ ∈ pn+1�A

[ψ(x0, . . . , xn)] ∩
⋂
i<n

[φ(xi, y)4 φ(xi+1, y)] ⊆ SA(x0, . . . , xn, y).

It follows that Fn ∩ [φ(xn, y)] is closed in SA(x0, . . . , xn, y), so its restriction to
SA(y), call it Qn, is closed by Corollary 3.3. Similarly, the restriction of Fn ∩
[¬φ(xn, y)] to SA(y), call it Rn, is also closed. It follows that Q =

⋃
n<m(Qn∩Rcn),

so Q is Borel. �

5.3. Generically Stable Measures. Let µ : LU (x) → [0, 1] be a global Keisler
measure, and let A ⊆ U be small.

Definition 5.17. We say µ is generically stable over A iff: it is finitely satisfiable
and definable, both with respect to A.

In order to give some examples of generically stable measures, we define two
notions of average measure.

Definition 5.18. Given a finite sequence ā = (a0, . . . , an−1) ⊆ Ux, the map
Avā : LU (x)→ [0, 1]

given by
Avā(φ) = 1

n

∑
i<n

δai(φ(U)),

where δai denotes the Dirac measure at ai, is a Keisler measure which we call the
average measure determined by ā.
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It is easy to see that Avā is generically stable over {im(ai) : i < n}. For our
second notion of average measure, we require T to be NIP.

Definition 5.19. If T is NIP and I = (bi : i ∈ [0, 1]) ⊆ Ux is indiscernible, then
the map AvI : LU (x)→ [0, 1] given by

AvI(φ) = m({i ∈ [0, 1] : U |= φ(bi)}),

where m denotes the Lebesgue measure, is a Keisler measure which we call the
average measure determined by I.

Notice that since we require T to be NIP and I to be indiscernible, the set
{i ∈ [0, 1] : U |= φ(bi)} is Lebesgue measurable for all φ ∈ LU (x). In Lemma 5.21
below, we will show that AvI is generically stable over I.

Lemma 5.20. Suppose T is NIP. Given φ ∈ L(x, y) and ε > 0, there exists n < ω
such that for every indiscernible sequence of x-tuples I = (bi : i ∈ [0, 1]), there are
a0, . . . , an−1 ∈ I such that

|AvI(φ(x, d))−Avā(φ(x, d))| ≤ ε

for all d ∈ U.

Proof. Let m = max{alt(φ(x, d)) : d ∈ U}, and let n ≥ m/ε. Given an indiscernible
sequence I = (bi : i ∈ [0, 1]) ⊆ Ux, let ak = bk/n for each k < n. Fix d ∈ U . Since
the set

K =
{
k < n : U |= φ(ak, d)4 φ(bi, d) for some i ∈

(
k

n
,
k + 1
n

)}
contains at most m elements, it follows that

|AvI(φ(x, d))−Avā(φ(x, d))| ≤ |K|
n
≤ ε.

�

Lemma 5.21. Suppose T is NIP. If I ⊆ U is an indiscernible sequence of tuples
indexed by [0, 1], then AvI is generically stable over I.

Proof. It is easy to see that AvI is finitely satisfiable in I. Fix φ ∈ L(x, y) and
r > 0. Let

Q = {q ∈ SI(y) : AvI(φ(x, b)) < r for some b |= q}
Suppose q ∈ Q. Let b |= q, and let

ε = r −AvI(φ(x, b))
2 .

By Lemma 5.20, there are a0, . . . , an−1 ∈ I such that for all d ∈ U , we have

|AvI(φ(x, d))−Avā(φ(x, d))| ≤ ε.

Let ψ denote the conjunction ∧
U|=¬φ(ai,b)

¬φ(ai, y).

Notice that q ∈ [ψ] ⊆ Q, so Q is open in SI(y). Thus, Lemma 5.12(3) asserts that
AvI is definable over I. �
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5.4. Extending Measures. Let D ⊆ LU (x) be an algebra (see [1, p. 21]) of
definable sets, and let ν : D → [0, 1] be a finitely additive probability measure. Fix
φ ∈ LU (x) and r ∈ [0, 1].

Lemma 5.22. If for all finite F ⊆ LU (x), there is a map µF : F → [0, 1] such
that

(1) for all D ∈ D ∩ F , we have µF (D) = ν(D),
(2) for all disjoint F0, F1 ∈ F , if F0 ∪ F1 ∈ F , then

µF (F0 ∪ F1) = µF (F0) + µF (F1), and
(3) if φ ∈ F , then µF (φ) = r,

then there is a global Keisler measure µ : LU (x) → [0, 1] extending ν such that
µ(φ) = r.

Proof. Let X = [0, 1]LU (x). By Tychonoff’s Theorem, X is compact. For all finite
F ⊆ LU (x), let

K(F) = {µ ∈ X : µ�F satisfies (1), (2), and (3)}.
Notice that each K(F) is closed and, therefore, compact. Let

K = {K(F) : F ⊆ LU (x) is finite}
Suppose that for all finite F ⊆ LU (x), there is a map µF : F → [0, 1] such that (1),
(2), and (3) hold. It follows that K has the finite intersection property, since⋂

i<n

K(Fi) ⊇ K
(⋃
i<n

Fi

)
.

Furthermore, since X is compact, there exists µ ∈
⋂
K∈KK. �

Proposition 5.23. If
sup{ν(D) : D ∈ D, D ⊆ φ} ≤ r ≤ inf{ν(D) : D ∈ D, φ ⊆ D},

then there is a global Keisler measure µ : LU (x) → [0, 1] extending ν such that
µ(φ) = r.

Proof. Let F ⊆ LU (x) be a finite algebra of definable sets, and let B = (B0, . . . , Bn−1)
be an enumeration of the atoms in D ∩ F . Notice that n ≥ 1 since all algebras on
X contain X. We can enumerate the atoms of F as

A =
{
Aji : i < n, j ≤ mi

}
where each Aji ⊆ Bi.
Case 1: If φ /∈ F , then for each i < n and j ≤ mi, let

µF (Aji ) =
{
ν(Bi) if j = 0,
0 otherwise.

Case 2: If φ ∈ F , we may assume we have enumerated B so that there exists
k < l < n such that

Bi ⊆ φ ⇐⇒ i < k and Bi ∩ φ 6= ∅ ⇐⇒ i < l.

Furthermore, we may assume we have enumerated A so that
i < l =⇒ A0

i ⊆ φ and i ≥ k =⇒ Amii ∩ φ = ∅.
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If i < k, let

µF (Aji ) =
{
ν(Bi) if j = 0,
0 otherwise.

If k ≤ i < l, let

µF (A0
i ) = max{min{r − ν(B0 ∪ · · · ∪Bi−1), ν(Bi)}, 0}

and

µF (Aji ) =
{

0 if 0 < j < mi,

ν(Bi)− µF (A0
i ) if j = mi.

If i ≥ l, let

µF (Aji ) =
{
ν(Bi) if j = mi,

0 otherwise.

If F ∈ F \ A, then let
µF (F ) =

∑
{A∈A :A⊆F}

µF (A).

We may now appeal to Lemma 5.22. �

5.5. Smooth Measures. Let µ : LU (x)→ [0, 1] be a global Keisler measure, and
let A ⊆ U be small.

Definition 5.24. We say µ is smooth over A iff: it is the unique global Keisler
measure extending µ�A.

Lemma 5.25. The measure µ is smooth over A if and only if for all φ(x, y) ∈
L(x, ∗) and all ε > 0, there exists n < ω, along with formulae

α0, . . . , αn−1 ∈ LA(x), β0, . . . , βn−1 ∈ LA(x), and γ0, . . . , γn−1 ∈ LA(y),

such that

(1) U |= ∀y
∨
i<n γi(y),

(2) U |= ∀y
∧
i<n [γi(y)→ ∀x [αi(x)→ φ(x, y)→ βi(x)]], and

(3) µ(βi)− µ(αi) < ε for all i < n.

Proof. Fix φ(x, y) ∈ L(x, ∗).
(⇒) Suppose µ is smooth over A, and let ε > 0. Proposition 5.23 implies that

for every b ∈ Uy there exists αb, βb ∈ LA(x) such that

U |= ∀x [αb(x)→ φ(x, b)→ βb(x)]

and µ(βb)− µ(αb) < ε. For every b ∈ U , let ψb be the LA(y) formula

∀x [αb(x)→ φ(x, y)→ βb(x)].

Since U |= ψb(b) for all b ∈ U , we conclude that {¬ψb : b ∈ U} is inconsistent with
TA. Therefore, there exist b0, . . . , bn−1 ∈ U such that U |= ∀y

∨
i<n ψbi(y). For

each i < n, let γi be the LA(y) formula

∀x [αbi(x)→ φ(x, y)→ βbi(x)].
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(⇐) Given b ∈ Uy, construct sequences (αk)k<ω and (βk)k<ω in LA(x) such that
for each k < ω, we have

U |= ∀x [αk(x)→ φ(x, b)→ βk(x)]
and

µ(βk)− µ(αk) < 1/k.
�

Proposition 5.26. Suppose T is NIP. There is a global Keisler measure ν on
LU (x) extending µ�A which is smooth over some small B ⊆ U .

Proof. Let κ = |T |+. If the proposition does not hold, we can construct a chain of
Keisler measures (να : α < κ) extending µ�A as follows:
α = 0: Let ν0 = µ�A.

α limit: Let να =
⋃
β<α νβ .

α+ 1: Given να a Keisler measure on LAb<α(x), choose

• φα(x, y) ∈ L(x, ∗),
• bα ∈ Uy,
• nα ∈ N, and
• Keisler measures ρ0 and ρ1 on LAb≤α(x) extending να

such that (ρ1− ρ0)(φα(x, bα)) > 1/nα, and let να+1 = 1
2 (ρ0 + ρ1). Notice

that for every θ ∈ LAb<α(x), if we let φ denote φα(x, bα), we have
ρi(φ4 θ) = ρi(φ) + ρi(θ)− 2ρi(φ ∧ θ) ≥ |ρi(φ)− ρi(θ)|,

and since
ρ0(θ) = ρ1(θ),

it follows that

να+1(φ4 θ) ≥ 1
2 |ρ1(φ)− ρ0(φ)| > 1

2nα
.

For each φ(x, y) ∈ L(x, ∗), let Aφ = {α < κ : φα is φ}. Since κ = |T |+, there
is a formula φ such that |Aφ| = κ. For each n > 0, let Bn = {α ∈ Aφ : nα = n}.
Again, there is a positive integer n such that |Bn| = κ. This, however, contradicts
Proposition 4.18. �

Lemma 5.27. GivenM |= T , if µ is smooth over M , then it is generically stable
over M .

Proof. Given φ ∈ LU (x) with µ(φ) > 0, by Lemma 5.25, there is α ∈ LM (x) such
that U |= α→ φ and µ(α) > 0. It follows that α(M) 6= ∅, so µ is finitely satisfiable
in M .

It remains to show that µ is definable over M . Let φ(x, y) ∈ L(x, ∗) and b ∈ Uy.
Suppose µ(φ(x, b)) < r for some r ∈ [0, 1]. By Lemma 5.25, there is γ ∈ tpM (b)
such that [γ] ⊆ [µφ]−1

M ([0, r)). Now we may appeal to Lemma 5.12(3). �

Lemma 5.28. Given M |= T , if µ is invariant over M and smooth (over some
small set), then it is smooth over M .



NOTES ON KEISLER MEASURES 19

Proof. Suppose µ is invariant over M and smooth. Lemma 5.27 asserts that µ is
definable, so by Corollary 5.13, it is definable over M .

Fix φ ∈ L(x, y) and ε > 0. Applying Lemma 5.25 to φ and ε gives us a finite
sequence of formulae

(αi(x, b), βi(x, b), γi(y, b))i<n
where αi(x, z), βi(x, z), γi(y, z) ∈ L and b ∈ Uz such that

U |=
∨
i<n

γi(y, b) ∧
∧
i<n

[γi(y, b)→ [αi(x, b)→ φ(x, y)→ βi(x, b)]]

and for each i < n, we have µ(βi(x, b) \ αi(x, b)) < ε. Since µ is definable over M ,
Lemma 5.12(3) ensures the existence of ψi(z) ∈ tpM (b) for each i < n such that for
all b′ ∈ ψi(U), we have µ (βi(x, b′) \ αi(x, b′)) < ε. It follows that

M |= ∃z
[∧
i<n

ψi(z) ∧
∨
i<n

γi(y, z) ∧
∧
i<n

[γi(y, z)→ [αi(x, z)→ φ(x, y)→ βi(x, z)]]
]
,

so Lemma 5.25 asserts that µ is smooth over M . �

5.6. Approximating Smooth Measures. Let µ : LU (x) → [0, 1] be a global
Keisler measure, and let D ⊆ U be a small set of parameters.

Proposition 5.29. Suppose µ is smooth over D. Given φ(x, y) ∈ L(x, ∗) and
ε > 0, there is a finite sequence ā = (a0, . . . , an−1) ⊆ Ux such that for all b ∈ Uy,
we have

|µ(φ(x, b))−Avā(φ(x, b))| < ε.

Furthermore, if D ⊆M |= T , then we may choose ā to be a sequence in M .

Proof. Lemma 5.25 gives us a finite sequence of LD formulae

(αi(x), βi(x), γi(y))i<n
such that

U |=
∨
i<n

γi(y) ∧
∧
i<n

[γi(y)→ [αi(x)→ φ(x, y)→ βi(x)]]

and µ(βi\αi) < ε/2 for each i < n. Let B ⊆ P(U) be the boolean algebra generated
by

{αi(U), βi(U) : i < n},
and let A denote the set of atoms in B. Fix K > 2|A|/ε. For each A ∈ A, choose
aA ∈ A and

kA ∈ {bK · µ(A)c, dK · µ(A)e}
in such a way that

K =
∑
A∈A

kA.

Let
λ = 1

K

∑
A∈A

kAδaA .

It follows that λ is a Keisler measure on LU (x). Notice that for all A ∈ A, we have

|µ (A)− λ (A)| < 1
K
,



20 ROLAND WALKER

so for all B ∈ B, we have
|µ(B)− λ(B)| < ε

2 .

Given b ∈ U , fix i < n such that U |= γi(b). Let B0 = αi(U), B1 = βi(U), and
Φ = φ(U, b). Recall that B0 ⊆ Φ ⊆ B1 and

µ(B1)− µ(B0) < ε

2 .

It follows that
λ(B1)− µ(B0) < ε

and
µ(B1)− λ(B0) < ε,

so we conclude that
|µ(Φ)− λ(Φ)| < ε.

�

Let π : SU (x) → SD(x) be the projection p 7→ p�D. Given any Borel subset
X of SD(x), we will use X∗ to denote π−1(X). Recall Lemma 4.12 asserts that
µ(X∗) = µ�D(X).

Proposition 5.30. Suppose µ is smooth over D. Given
• φ(x, y) ∈ L(x, ∗),
• ε > 0, and
• X0, . . . , Xm−1 Borel subsets of SD(x),

there is a finite sequence p̄ = (p0, . . . , pn−1) ⊆ supp(µ) such that for all b ∈ Uy and
all ` < m, we have

|µ([φ(x, b)]U ∩X∗` )−Avp̄([φ(x, b)]U ∩X∗` )| < ε.

Proof. Lemma 5.25 gives us a finite sequence of LD formulae

(αi(x), βi(x), γi(y))i<n
such that

U |=
∨
i<n

γi(y) ∧
∧
i<n

[γi(y)→ [αi(x)→ φ(x, y)→ βi(x)]]

and µ(βi \ αi) < ε/2 for each i < n. Let B ⊆ P(SD(x)) be the boolean algebra
generated by

{X` : ` < m} ∪ {[αi(x)]D, [βi(x)]D : i < n} ,
and let A denote the set of atoms in B. Fix K > 2|A|/ε. For each A ∈ A, choose
pA ∈ A∗ and

kA ∈ {bK · µ(A)c, dK · µ(A)e}
in such a way that

K =
∑
A∈A

kA

and if kA > 0, then pA ∈ supp(µ). Let

λ = 1
K

∑
A∈A

kApA.
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It follows that λ is a Keisler measure on LU (x) which extends uniquely to a regular
Borel measure on SU (x), namely

1
K

∑
A∈A

kAδpA .

Notice that for all A ∈ A, we have

|µ (A∗)− λ (A∗)| < 1
K
,

so for all B ∈ B, we have
|µ(B∗)− λ(B∗)| < ε

2 .

Given b ∈ U and ` < m, fix i < n such that U |= γi(b). Let B0 = [αi(x)]D ∩X`

and B1 = [βi(x)]D ∩X`. Let Φ = [φ(x, b)]U ∩X∗` . Recall that B∗0 ⊆ Φ ⊆ B∗1 and

µ(B∗1)− µ(B∗0) < ε

2 .

It follows that
λ(B∗1)− µ(B∗0) < ε

and
µ(B∗1)− λ(B∗0) < ε,

so we conclude that
|µ(Φ)− λ(Φ)| < ε.

�

Corollary 5.31. Suppose T is NIP. Given φ(x, y) ∈ L(x, ∗) and ε > 0, there is a
finite sequence ā = (a0, . . . , an−1) ⊆ Ux such that for all d ∈ Dy, we have

|µ(φ(x, d))−Avā(φ(x, d))| < ε.

Furthermore, if X0, . . . , Xm−1 are Borel subsets of SD(x), there is a finite sequence
p̄ = (p0, . . . , pn−1) ⊆ SU (x) such that for all d ∈ Dy and all ` < m, we have

|µ([φ(x, d)]U ∩X∗` )−Avp̄([φ(x, d)]U ∩X∗` )| < ε.

Proof. By Proposition 5.26, the restriction µ�D extends to a global Keisler measure
ν which is smooth over some small D′ ⊇ D. �
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